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Reliable Localization Using Set-Valued
Nonlinear Filters

Giuseppe Calafiore

Abstract—In this paper, we propose a novel methodology for re-
liable localization of an autonomous mobile robot navigating in
an unstructured environment using noisy absolute measurements
from its exteroceptive sensors. A new deterministic filtering tech-
nique is introduced, which is based on the recursive computation
of a bounding set that is guaranteed to contain the true state of
the system, despite process and observation noise, and taking into
explicit consideration uncertainties due to the linearization error.
The proposed set-valued nonlinear filter relies on a two-step pre-
diction–correction structure, with each step requiring the solution
of a particular convex optimization problem. The method is illus-
trated by simulation on a localization problem for a nonholonomic
rover, and it is compared with the standard extended Kalman filter
approach.

Index Terms—Bounded uncertainty, linear matrix inequalities,
mobile robot localization, nonlinear filters.

I. INTRODUCTION

THE accurate determination of position and orientation of
a mobile robot with respect to a fixed reference frame

(absolute localization) is a key requirement for autonomous
navigation in unstructured environments. For this reason,
the localization problem has been extensively studied in the
robotics literature (see for instance [4], [12], [14], and [20], and
the references therein). The mainstream approach for robot lo-
calization is Bayesian estimation, which is based on stochastic
assumptions about the process and measurement errors, and is
aimed to constructing the posterior density of the current robot
state, conditioned on all available measurements. In particular,
when the process and measurement error processes are as-
sumed Gaussian, the Bayesian approach results in the classical
extended Kalman filtering (EKF) framework (see [2], [11],
and [14]). However, in robotics applications, the distribution
of the sensor and process noise is generally multimodal and
imprecisely known, and the nonlinearities of the system may
seriously degrade the EKF performance. These limitations
have been recognized in the literature, and several schemes
have been proposed to overcome them. Notably, an adaptive
EKF approach for on-line estimation of the noise statistics have
been proposed in [12] and [18], and joint Bayesian hypothesis
testing and Kalman filtering have been proposed in [19]. A
probabilistic confidence set approach has been presented in
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[16], which is optimal over a certain class of noise distribu-
tions, and a Monte Carlo approach, where the noise density is
represented by means of a set of randomly drawn samples, is
proposed in [7]. The effects of the linearization errors on the
EKF are studied in [10].

In this paper, we depart from the Bayesian approach, and pro-
pose a new methodology for reliable localization which requires
no assumption on the noise statistics; the only assumption is
that process and measurement errors are bounded in magnitude
by some known quantity. We call this localization method “re-
liable” since the algorithm provides a bounding ellipsoidal set
that is guaranteed to contain the true state of the system, de-
spite process and measurement disturbances and linearization
errors. Reliable localization is of course critical in mobile appli-
cations, as well as in manipulation tasks, since failure to capture
the true pose within the confidence set may result in a collision
or task failure. The solution is computed recursively and it is
based on a two-step prediction-correction structure, in analogy
with the EKF. Each step of the algorithm requires the solution of
a semidefinite optimization problem (SDP), which is a special
convex optimization problem that may be solved numerically
with great efficiency (see [5], [9], and [21]).

Set-valued filters have already been studied for the linear case
(see, e.g., [3] and [15]). In the classic literature on this topic
(referred to also as deterministic, ellipsoidal, or set-member-
ship filtering), a bounding set for the state of a linear system is
computed recursively, starting from deterministic assumptions
on the noise affecting the system, which is assumed to be an
unknown-but-bounded (UBB) sequence, instead of a stochastic
sequence. A similar approach based on interval analysis is also
studied in [13]. The use of semidefinite optimization in deter-
ministic robust filtering problems has been pioneered in [8].

The paper is organized as follows. In Section II, the notation
is set and the class of systems of interest is introduced. In Sec-
tion III, the two-step set-valued filter for reliable localization is
presented (main results in Theorem 1 and Theorem 2), and the
algorithm for the filter recursion is given. Section IV presents a
simulated numerical example of application to localization of a
nonholonomic rover, and a comparisons with the EKF localiza-
tion method are made. The conclusion is drawn in Section V.

II. PROBLEM STATEMENT AND NOTATION

The robot localization approach presented in this paper may
be viewed as direct application of a general technique for ro-
bust set-valued nonlinear filtering. This technique is treated in
generality in the present and in the following section. Imple-
mentation issues and details of application to robot localization
are deferred to Section IV.
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The sampled dynamics of the robot may be described by
means of a discrete-time nonlinear system of the form

(1)

where , denote the state and input vec-
tors at time , respectively, is a noise vector, and
standard regularity assumptions are required on the the func-
tion . The noise affecting the system is assumed to be an
UBB sequence, i.e., for all .1 This noise descrip-
tion is often more realistic than a stochastic description in many
applications. We do not assume knowledge of a particular prob-
ability distribution on the noise, but rather assume deterministic
bounds on its amplitude. These bounds are obtained by physical
considerations on the plant and sensors and actuators models.

Associated to the system equations, there is a nonlinear mea-
surements map

(2)

where is the output measurement vector, and
is a bounded noise vector, . In the context of

robot localization, the measurement equation represents abso-
lute measurements from the robot exteroceptive sensors.

Based on an initial set-valued estimate of the state and on
the noisy measurements, our goal is to recursively compute set-
valued estimates for the state of the system, in the form of ellip-
soids of minimal size (in the sense that the sum of the squared
semiaxes lengths is minimized) that guarantee to contain the
“true” state of the system, for any possible value of the uncer-
tainty and linearization error. This robust filtering procedure has
its natural applications in strong tracking for nonlinear systems,
and in localization problems.

The set estimate will be computed in two steps, in a way sim-
ilar to the EKF: a prediction step, and a measurement update
step. The main differences with respect to the EKF framework
are that 1) we are no longer in a stochastic noise setting and 2)
we explicitly impose a robustness condition against lineariza-
tion errors. The resulting equations are more complicated than
the Riccati recursions, but can still be solved very efficiently
using recently developed interior-point semidefinite program-
ming (SDP) algorithms [9], [21].

In the following, we shall use the notation to denote
the ellipsoid for some ,
having center and shape matrix . When
(the sign means “positive definite”) an alternative represen-
tation is . The “size” of the
ellipsoid is measured by means of the sum of squared semiaxes
lengths, which is given by , where Tr is the trace function.
The symbol denotes the Euclidean norm of , it is a
vector, and the spectral (maximum singular value) norm of ,
if is a matrix.

III. ROBUST SET-VALUED NONLINEAR FILTER

A. Set-Valued State Prediction

In the first step, we assume to have a previous set-valued esti-
mate of the state, in the form of a bounding ellipsoid

1The condition kw k � 1 amounts to considering spherical noise. Generic
ellipsoidal noise can be treated in our framework in a straightforward way, by
suitably scaling the noise-influence matrix B .

with center and shape matrix , i.e., we assume that at the
time instant

for some such that (3)

The state equations (1) can be linearized about the central esti-
mate as

(4)

where and

where is a problem-dependent scaling matrix, and
is some unknown matrix, such that . The un-

certainty term has a double interpretation: together with the
scaling it takes into account uncertainty in the model ma-
trix due to neglected higher order terms in the Taylor series
expansion of the original nonlinear model (1). A rigorous justi-
fication of the validity of this representation for the linearization
error is given in Appendix C. Alternatively, it may be viewed as
a “robustification” term, introduced to take into account generic
model inaccuracies in the matrix . If one wants instead to
neglect the effects of linearization errors and/or model uncer-
tainties, should be set to zero.

The robust prediction step is now aimed at determining a new
ellipsoid , which guarantees to contain
the state , for any allowable value of the noise and lineariza-
tion error. In formulas, we want to compute , ,
such that the condition

(5)

holds for any , , and . The matrix
is then computed from by means of Cholesky

factorization. The result for robust prediction is given in the fol-
lowing theorem.

Theorem 1: If (3) and (4) hold, then a predicted bounding
ellipsoid for the state at time can be computed
by solving the following semidefinite program in the variables

, , , ,

minimize

subject to

(6)

where

(7)

The proof of this theorem is reported in Appendix A.
We remark that computing the optimal solution of the opti-

mization problem in Theorem 1 requires essentially op-
erations, which is thus comparable with the numerical com-
plexity of the prediction step of a standard EKF. The
complexity figure is obtained by first reformulating the problem
in a suitable decoupled form, and then solving the decoupled
problem via an interior-point barrier method for convex pro-
gramming. Explicit details on this operation are found in [6].



CALAFIORE: RELIABLE LOCALIZATION USING SET-VALUED NONLINEAR FILTERS 191

B. Measurement Update

At the measurement step, we are given the predicted ellipsoid
for the state , i.e.,

for some such that
(8)

where , and we want to update this
information with the one coming from the current measurement

. To this end, we linearize the output equations (2) about
the current estimate , obtaining

(9)

where is some matrix such that which,
together with the problem-dependent scaling matrix , takes
into account the remainder due to the linearization error and/or
the uncertainty in the measurement matrix (see also the
discussion in Section III-A and Appendix C), and

The updated ellipsoid that is guaranteed to
contain the state , should satisfy the condition

(10)

whenever the equality

(11)

holds for some , , and . The result
for the computation of the updated bounding ellipsoid is given
in the following theorem.

Theorem 2: Assume that (8) and (9) hold. Let

(12)

and let be an orthogonal complement of , i.e., a matrix of
full-rank, such that . Then, the updated bounding ellip-
soid for the state is given by the solution of the following
SDP in the variables , , , ,

minimize

subject to

(13)

where

(14)

The proof of this theorem is reported in Appendix B.
Computing the optimal solution of the optimization problem

in Theorem 2 requires essentially operations (see [6] for
details on how this complexity figure is obtained).

Remark: The measurement update result presented in the
above theorem is useful also for sensor fault detection. Geomet-
rically, in Theorem 2, we compute an ellipsoid of minimal size
that covers the intersection of the predicted ellipsoid with
the set of states compatible with the measurement equation (11).
Therefore, if the numerical code that solves (13) determines a

whose trace is (numerically) zero, then it means that the
intersection is void, and the collected measurement is not
compatible either with the output uncertainty model, or with
the prediction model. This situation may happen when the ac-
tual process or measurement errors exceed the assumed bounds.
In this case, the datum can be removed as an outlier (measure
failure), and the predicted ellipsoid is carried over for the
next step.

C. Algorithm for Robust Filter Recursion

The procedure for the recursive computation of the state-
bounding ellipsoids is summarized below. In the algorithm, the
notation is used to denote the state estimate at the current time

, and is used to denote the predicted forward state estimate
. An analogous notation is used for the other quantities

of interest.

Init.: Given an initial bounding ellipsoid
, and the current value

of input , select a time horizon ,
and set . Let , ,

.
State lin.: Get linearized model of state
equations in the form (4).

Prediction: Solve SDP (6) to obtain
and . The matrix is
then obtained from the Cholesky factor-
ization of .

Meas. update: Set ;
1. If measurement is not available, then
set , and goto Loop;
else collect measurement , and get lin-
earized model of output equations
in the form (9).
2. Solve SDP (13) to determine the new
optimal and , and determine new

by Cholesky factorization of .
3. If is lower than a prespecified
treshold, then warn “Measurement
not compatible with uncertainty model”,
and set , .

Loop: If then Exit, Else Goto
State lin.

In Section IV, we present an application of this filtering algo-
rithm to a mobile robot localization problem, and compare the
performances of the robust filter with the ones obtained by the
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EKF. For clarity of exposition, a basic implementation of the
EKF is reported in the next section.

1) EKF Recursion: Using the same notation as in the pre-
vious section, we denote with the EKF state estimate at
the current time , and with the predicted forward EKF
state estimate . Let be the process-error covariance,
and be the measurement-error covariance. The current filter
covariance matrix is denoted as , and the prediction co-
variance as . An analogous notation is used for the other
quantities of interest. The EKF recusion is as follows:

Init.: Given an initial state estimate
, initial covariance , and

the current value of input , select a
time horizon , and set . Let

, .
State lin.: Get linearized model of state
equations in the form (4).

Prediction:

Meas. update: Set ;
1. If measurement is not available, then
set ,
and goto Loop; else collect measurement
, and get linearized model of
output equations in the form (9).
2.

Loop: If then Exit, Else Goto
State lin.

2) Comparing Deterministic and Stochastic Filter Re-
sults: The robust deterministic filter of Section III-C and the
stochastic filter of Section III-C1 require different inputs and
provide different outputs. Here, we briefly discuss how to
consistently compare these results. The robust filter requires an
initial estimate in the form of an ellipsoid with center
and shape matrix , and returns bounding ellipsoids for the
state. The stochastic filter requires instead an initial estimate
in the form of an expected value and covariance matrix

, and returns expected values and covariances
for the state. From the covariance information, however,

we can extract a (probabilistic) confidence ellipsoid for the
state, that can be compared with the ellipsoid provided by the
robust filter. To this end, consider the ellipsoid

Now, if is an -dimensional random vector distributed ac-
cording to the normal (Gaussian) distribution ,
with mean and covariance matrix , then the random

variable has the
density with degrees of freedom, i.e., the probability density
function of is as follows (see for instance Theorem 3.3.3 of
[1]):

Therefore, the probability of the event is
given by the integral of , from zero to . In other words,

, where denotes
the cumulative distribution function with degrees of
freedom. This function, as well as its inverse, is tabulated in
standard numerical tables, and is also available in numerical
software packages such as Matlab. Hence, for given proba-
bility level , we can determine the radius such
that the ellipsoid contains with probability ;

thus represents a -confidence ellipsoid for the
state of the system. A plot of the dependence of the scaling
factor on is depicted in Fig. 1. From this plot, we notice for
instance that if the state dimension is , then, multiplying
the EKF filter covariance by a scaling factor , with

, we obtain a confidence ellipsoid that contains the state
with probability greater than 99%. This “confidence” should,
however, be interpreted with care, since it holds only as long
as the linearity and Gaussian hypotheses on the noises hold.
This is indeed one of the main motivations of the present paper:
when nonlinearities are present and/or the noise distribution is
not Gaussian, then the confidence regions determined via the
EKF approach can be very misleading (see also the results of
the examples Section IV).

IV. APPLICATION: RELIABLE LOCALIZATION OF A

NONHOLONOMIC ROBOT

In this section, we illustrate the use of the robust filtering algo-
rithm on a two-dimensional localization problem for a unicycle
robot equipped with sonar sensors, and compare reliability and
performance of our technique with those obtained using an EKF.

Consider the mobile robot depicted in Fig. 2. Let , be
the coordinates of the main axis midpoint with respect to a fixed
reference frame, and let be the angle between the robot
forward axis and the direction. The kinematic (odometric)
model of the unicycle is described by the following:

where and denote, respectively, the linear and angular
velocities of the robot. By means of the change of coordinates
(chained form [11], [17])

and assuming zero-order hold on and , the above
system can be integrated exactly, and then discretized with
sample time and expressed in linear form as
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Fig. 1. Scaling factor r(
) for determination of the 
-confidence ellipsoid for various values of the state dimension n.

Fig. 2. Mobile robot in an indoor environment.

where

and , is UBB noise that accounts for model in-
accuracies (e.g., wheel slippage, misalignments, etc.). Further
details and justification for the use of the chained-form descrip-
tion may be found in [11].

The robot is equipped with five sonar sensors, ideally placed
at the robot center, with orientation of , , 0, ,

with respect to the robot forward axis. The sonar measurement
map is nonlinear, and depends on the environment description.
The environment is depicted in Fig. 2, and is constituted by four
vertical planes, whose normals form the angles , , 0,
with the direction, and whose distances form the origin are
2, 14, 25, 10 m, respectively. Each sonar has a beamwidth

; expressions for the range measurements in relation to the
environment description, and the selection of the valid sonar
readings have been implemented as detailed in [12]. Echoes and
crosstalk interferences have been neglected in the simulation.

The noise influence matrix is chosen of the form
, where is the maximum nominal value of the

imposed linear velocity, and .
This accounts for the fact that process uncertainty is higher
when the robot is moving faster. The sonar range reading error
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(a) (b)

Fig. 3. Second simulation. (a) Nominal (dashed line) and actual (solid line) robot trajectory in the x � x plane. (b) Nominal (dashed line) and actual (solid
line) robot angle x = �.

is assumed to have maximum amplitude m. The
scaling matrix is zero, since system dynamics are linear
(no linearization error), while is also set to zero, thus delib-
erately neglecting output linearization error, in order to fairly
compare the set-valued filter results with the EKF.

For comparison purposes, we performed numerical sim-
ulations in two different situations. In the first simulation,
the process and measurement noises have been generated
as Gaussian random sequences with covariance matrices

and , respectively.2 The data
provided to the robust filter are the error bound information ,

, while the data provided to the Extended Kalman fiter are
the noise covariances and . It is clear that this situation is
advantageous for the EKF, since its Gaussian noise hypotheses
are exactly satisfied.

In the second simulation, the process and measurement noises
have been generated as uniform random sequences, satisfying
the amplitude bounds described by the matrices and , and
were further polarized in sign. As before, the data provided to
the EKF are the covariance matrices and

(but the noise is no longer Gaussian), while the data
provided to the robust filter are the error bounds described by

and .
In both simulations, the imposed nominal trajectory is a si-

nusoidal path, and the system evolves in open loop, therefore,
process errors are accumulated. The time horizon is ,
the sampling interval is , and it is assumed that measure-
ment information is available every . At the sampling
instants when no measurement is available, both filters propa-

2The 3.5 factor has been used since a Gaussian random variable with standard
deviation D=3:5 has more than 99% probability of being bounded in amplitude
by D, therefore 3.5 is used as a “conversion factor” from bounded distribution
to Gaussian distributions, and vice-versa. See also the discussion at the end of
Section III-C2.

gate forward their predicted estimate. The nominal and actual
trajectory for the second simulation is depicted in Fig. 3.

In the simulations, the ellipsoids of confidence computed by
the filters are projected onto the first two components of the
state, to obtain ellipsoids of confidence for the robot position
in the plane, and onto the third component of the state,
to obtain confidence intervals for the robot orientation . For
the EKF, the ellipsoids of confidence (to more than 99% prob-
ability) were computed multiplying the filter covariance by the
scaling factor , as discussed in Section III-C2.

In the first simulation, the robust filter yielded a root-mean-
squared (rms) localization error of 0.0128 m, while the EKF
yielded a slightly higher rms error of 0.0143 m. Moreover, the
EKF confidence ellipsoid failed to contain the true state of the
system 28% of the times. Thus, even in the (unrealistic) case of
purely Gaussian noise, the EKF performance may degrade, due
to nonlinearities in the system.

The results of the second simulation are displayed in Figs. 4
and 5. Fig. 4 shows the localization sets computed by the robust
filter for the position and attitude of the robot.

Fig. 5 shows a particular of the second simulation, where the
99% ellipsoids of confidence computed by means of the EKF
are added to the plot. The typical situation at a given point of
the robot trajectory is that EKF gives deceptive confidence in-
formation, and fails to contain the true state of the system; the
robust filter gives instead a reliable confidence set, that always
guarantees containment of the true state. Notice that, in this sim-
ulation, the 99% EKF confidence set never contained the actual
robot state. This confirms that the confidence results obtained
from the EKF should be interpreted with great care whenever
the actual operating conditions depart from the ideal assump-
tions under which the filter has been designed.

The rms localization error resulted to be 0.1 m for the EKF,
and 0.082 m for the robust filter, therefore the robust filter
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(a) (b)

Fig. 4. Second simulation. All data is plotted relative to the nominal trajectory (i.e., differences of position and angles with respect to the nominal trajectory
are plotted). (a) Actual robot positions (crosses) and their ellipsoids of confidence computed by the set-valued filter. Dots represent the center of the confidence
ellipsoids. (b) Actual robot attitude (crosses) and their intervals of confidence computed by the set-valued filter. Dots represent the center of the confidence intervals.

(a) (b)

Fig. 5. Second simulation, particular. All data is plotted relative to the nominal trajectory (i.e., differences of position and angles with respect to the nominal
trajectory are plotted). (a) Actual robot positions (crosses) and their ellipsoids of confidence computed: 1) by the set-valued filter (light line) and 2) by means of
the EKF (bold line). (b) Actual robot attitude (crosses) and their intervals of confidence computed by: 1) the set-valued filter (light line) and 2) by means of the
EKF (bold line).

yielded again superior performance also in terms of average
localization errors, i.e., the centers of the localization ellipsoids
are closer to the true robot position than the centers computed
by the EKF.

V. CONCLUSION

This paper presented a novel methodology for reliable local-
ization, based on a robust recursive nonlinear filtering algorithm
which relies on deterministic assumptions on the noise and
uncertainties affecting the system. This approach removes two

long-standing drawbacks of the classical stochastic approach
to localization, namely the need of an accurate model of the
noise statistics, and the effects of linearization errors. The filter
provides set-valued estimates of the system state, that give
guaranteed information on the location of the state, despite
the noise and the linearization errors. This reliable knowledge
may play an important role in robotic tasks such as navigation
through narrow passageways, or in manipulation tasks, where
accurate pose estimation is needed. The filter also provides a
systematic way to check the model assumptions and therefore
to pinpoint observations affected by gross errors and/or system
failures.
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On the simulated experiments, the robust filter provided
superior performance with respect to the EKF approach. In
practical situations, where the system is subject to polarization,
misalignments, and offsets, that cannot be effectively modeled
as Gaussian noise. The latter approach tends to provide erro-
neously small confidence sets around its estimates.

APPENDIX

A. Proof of Theorem 1

First, we write the prediction error , taking into
account (3) and (4)

Defining

(15)

with , we can restate the prediction error in the alter-
nate form

where we defined

We now notice that the conditions (15) are equivalent to

Therefore, we have that (5) holds for any , ,
if and only if the condition

holds whenever the following inequalities are satisfied

A sufficient condition for the previous to hold is given by the
so-called -procedure, [5]: there exist positive scalars , ,

such that

In turn, the above condition is true for all if and only if

where is defined as in (7). The statement of the theorem then
follows by straightforward application of the Schur complement
rule to the above matrix inequality.

B. Proof of Theorem 2

We outline the proof, which is similar to the one of Theorem
1. Define

(16)

with . Then, the expression of the filtering error,
using the information from the prediction step in (8), results in

where is defined as in (14), and . Simi-
larly, the measurement equation (11) may be expressed as

(17)

where is defined as in (12). This means that all vectors
which are compatible with (17) must be of the form , for
some vector , being an orthogonal complement of .

Noticing now that the conditions (16) are equivalent to

we have that (10) holds for any , , ,
and it is compatible with the output equation, if and only if the
condition

holds whenever the following inequalities are satisfied

Using the -procedure, as we did in the proof of Theorem 1, we
have that a sufficient condition for the previous to hold is the
existence of positive scalars , , , such that

where is defined as in (14). The statement of the theorem
then follows by straightforward application of the Schur com-
plement rule to the above matrix inequality.

C. Linearization With Bounded Error

We here provide a rigorous justification for the use of the
introduced representation of the linearization error.

Consider a function , let be a given
point, and denote with the th component of , which is as-
sumed to be twice continuously differentiable. From classical
analysis, the first-order Taylor series expansion of about
may be expressed as

(18)
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where we defined

...

where denotes the element in the row and column of
the matrix , and , for some
The last term in (18) represents the remainder of the series ex-
pansion, and involves the Hessian matrices of the th element
of , computed at unknown points on the line segment between

and .
We now elaborate on the expression of the remainder, for the

case when is bounded in an ellipsoid of center and shape
matrix , that is , for some with .
Since the Hessians are assumed continuous, their norm reaches
an extremum on the bounded domain , therefore it follows that
there exist constants such that, for ,

, for all . In practical situations, the con-
stants may be determined by numerical computation. Since

, with , then
and, therefore, there exist vectors , such that

. In other words, there exist
a matrix with columns in the set

, such that . On the
other hand, it may be easily verified that for any matrix in the
above set, we have , therefore, the previous state-
ment can be restated in our final form as: there exists a matrix

in the set , such that , with

From this follows that the expansion (18) can always be written
in the form

for some value of with .
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